Setting Material Function Design Targets for Linear Viscoelastic Materials and Structures
نویسندگان
چکیده
Rheologically complex materials are described by function-valued properties with dependence on a timescale (linear viscoelasticity), input amplitude (nonlinear material behavior), or more generally both (nonlinear viscoelasticity). This complexity presents a difficulty when trying to utilize these material systems in engineering designs. Here, we focus on linear viscoelasticity and a methodology to identify the desired viscoelastic behavior. This is an early-stage design step to optimize target (function-valued) properties before choosing or synthesizing a real material. In linear viscoelasticity, it is not obvious which properties can be treated as independent design variables. Thus, it is nontrivial to select the most design-appropriate constitutive model, to be as general as possible, but not violate fundamental restrictions. We use the Kramers–Kronig constraint to show that frequency-dependent moduli (e.g., shear moduli G0ðxÞ and G00ðxÞ) cannot be treated as two independent design variables. Rather, a single function such as the relaxation modulus (e.g., K(t) for force-relaxation or G(t) for stress relaxation) is an appropriate function-valued design variable. A simple case study is used to demonstrate the framework in which we identify target properties for a vibration isolation system. Viscoelasticity improves performance. Different parameterizations of the kernel function are optimized and compared for performance. While parameterization may limit the generality of the kernel function, we do include a nonobvious representation (power law) that is found in real viscoelastic material systems and in the spring-dashpot paradigm would require an infinite number of components. Our methodology provides a means to answer the question, “What viscoelastic properties are desirable?” This ability to identify targeted behavior will be useful for subsequent stages of the design process including the selection or synthesis of real materials. [DOI: 10.1115/1.4032698]
منابع مشابه
Generalized Viscoelastic Material Design with Integro-differential Equations and Direct Optimal Control
Rheological material properties are examples of functionvalued quantities that depend on frequency (linear viscoelasticity), input amplitude (nonlinear material behavior), or both. This dependence complicates the process of utilizing these systems in engineering design. In this article, we present a methodology to model and optimize design targets for such rheological material functions. We sho...
متن کاملEarly-stage Design of Rheologically Complex Materials via Material Function Design Targets
Rheological material properties are high-dimensional function-valued quantities, such as frequency-dependent viscoelastic moduli or non-Newtonian shear viscosity. Here we describe a process to model and optimize design targets for such rheological material functions. For linear viscoelastic systems, we demonstrate that one can avoid specific a priori assumptions of spring-dashpot topology by wr...
متن کاملIncremental layerwise finite element formulation for viscoelastic response of multilayered pavements
This paper provides an incremental layerwise finite element formulation for the viscoelastic analysis of multilayered pavements. The constitutive behavior of asphalt concrete is represented by the Prony series. Layerwise finite element has been shown to provide an efficient and accurate tool for the numerical simulation of laminated structures. Most of the previous research on numerical simula...
متن کاملPerformance Evaluation of Viscoelastic and Friction Passive Damping System in Steel Structures
Additional dampers are employed in order to decrease the dynamic response of structure against the earthquake and wind loading recently. In this study, two types of systems related to waste of inactive energy, i.e. frictional damper which is categorized in dampers dependent on movement and viscoelastic damper which is categorized in dampers dependent on velocity, in making steel structures resi...
متن کاملEnabling Design with Rheological Complexity: Intuition and Optimization of Viscoelastic Materials By
In this thesis, we seek to outline a methodology to enable engineering design based on rheologically complex materials. Traditionally, engineers choose hard materials or simple uids for design. Complex materials (soft solids and non-Newtonian uids) greatly increase the design space. Additionally, these materials add functionality (viscoelasticity, nonlinearity) that can achieve diverse performa...
متن کامل